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A bstract

APPLICATION OF THE KALMAN FILTER 

TO A MARKOV SW ITCHING MODEL 

by 

Kazume Nishiyama 

Adviser: Professor Salih N. Neftqi

This paper proposes a linear approximation in the form of Kalman filter for models with 

Markov regime shifts. James Hamilton (1989) developed the optimal nonlinear algorithm 

for this type of model in Econometrica. However, the nonlinear filter lacks a closed form 

solution. It involves highly complicated and time-consuming procedures and is difficult to 

implement. On the other hand, the optimal linear filter, the Kalman filter, has a closed 

form solution and is simple and easy to implement. This paper investigates how well the 

Kalman filter approximates the optimal filter in various situations.

In the first section of this paper, the Kalman filter formulae are derived for a model 

with hidden states following a first order Markov process. Next, we apply the Kalman filter 

to US real GNP series to establish business cycle dates. These dates are compared with 

those of Hamilton and the National Bureau of Economic Research. Finally, simulations are 

conducted to compare the two filters in more general contexts.

The results indicate that the optimal linear filter approximates the nonlinear filter re­

markably well. When the Kalman filter is applied to US real GNP series, it yields business 

cycle dates which are very similar to those of NBER and Hamilton. Moreover, the results of 

simulations indicate that the larger the unexpected jumps or shifts in the series, the better 

the Kalman filter approximates the nonlinear filter. Further, for extremely large unexpected 

jumps and shifts, the Kalman filter actually outperforms the nonlinear filter.
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1 Introduction

It has been of considerable interest to characterize the nature  of economic time series. 

One of the recent approaches to this investigation revolves around the Markov switch­

ing models. These models assume that the hidden state  of the economy is subject to 

discrete regime shifts governed by a Markov process.

Hamilton (1988) analyzed the term structure of interest rates using the model in 

which the mean level of the short term interest ra te  is subject to a two-state second 

order Markov process and the disturbance term  follows an AR(4) with an error whose 

variance is also subject to regime changes. The practical difficulties in this type of 

model arise from their nonlinear behavior which cannot be handled by conventional 

econometric methods. Hamilton proposed a  nonlinear iterative procedure to model 

shifts in regimes. In his 1989 paper, he applied this m ethod on quarterly US GNP 

series and was successful in assigning business cycle dates. The Markov switching 

model owes its recent popularity to Hamilton’s algorithm  proposed in his 1988 and 

1989 papers.

H am ilton’s nonlinear filter yields a series of conditional distribution of the hidden 

state  and the observed variable at each £, given the current and past values of the 

latter. The conditional distribution of the observed variable is used to construct the 

likelihood function which is maximized to estim ate param eters. The inference about 

the regime can be made using the result from a smoothing technique.

Nonlinear filter is optimal in the sense of minimizing mean squared errors(MSE). 

However, in general nonlinear filter lacks a closed form solution, moreover involves 

highly complicated procedures at each stage of iteration, and is time-consuming to

1
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implement in practice. Due to its complexity, applications of nonlinear filter has been 

limited to relatively small system s (Hamilton, 1990)

Efforts to overcome these difficulties have been made. H am ilton (1990) himself 

proposed a use of an EM algorithm  to maximize an ill-behaved likelihood function 

more easily. McCulloch and Tsay (1992) analyzed a general Markov switching model 

in Baysian framework using Gibbs sampling technique. This techniques is used to 

extracting marginal distributions from conditional distributions of variables.

This paper proposes an optim al linear approximation in the form of the Kalman 

filter for the markov switching model. It is well known that an optim al linear filter 

for a non- Gaussian process is the optim al linear filter for Gaussian analog of the 

original non-Gaussian process (Lipster and Shiryayev, 1977).

When the Kalman filter is applied to a Gaussian process, it yields a series of 

estim ators and an associated covariance matrix. These estim ators are optim al in 

the sense of minimizing MSE. If it is applied to non-Gaussian process, it loses its 

optimality, but it still remains to be optimal within the class of linear estim ators. Our 

basic idea is to approximate the  nonlinear filter by the optim al linear filter. If the 

result of the linear approximation is “close enough” to that of the  optim al nonlinear 

filter, the use of the optimal linear filter on a non-Gaussian process is justified.

Also, if the data contain errors in variables, applying the optim al linear approx­

imation may be more appropriate. Hence, errors in variables can provide another 

justification for obtaining Gaussian analogs of finite state Markov processes.

This paper is arranged as follows. In section 2, the simplest model with the states 

governed by a  first-order Markov process is presented. In addition, the Kalman filter 

is derived in a way which shows its optim ality among all linear estim ators. Further, 

properties of the Kalman filter applied on a non-Gaussian process is compared to

2
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the Kalman filter applied on a Gaussian process. The comparison w ith the nonlinear 

filter is also made. In section 3, we run a Kalman filter on the sam e da ta  set used by 

Hamilton to compare the performances of the Kalman filter and th e  nonlinear filter in 

establishing historical business cycle dates. Section 4 uses sim ulations to compare the 

two filters in various situations econometricians face when they a ttem p t to predict 

the sta te  of the economy with a priori estimates.

3
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2 M odel w ith  Markov R egim e Changes

2.1 M odel

Let {t/i} be a stationary process whose behavior is governed by underlying states of 

the economy, 9t. Assume th a t 9t is a two-state first-order Markov process, with the 

states being economic upswings (state 1) and economic downturns (state 0).

9, =
a i if s tate  1 occurs 

ao otherwise

The probability law for the transition between these two states can be described by 

the following probabilities.

Pn =  P(9t =  \9t~\ — ai)

Pio =  P(9t =  ao|0f- i  =  «i) =  1 — pn

Poo =  P[9t = ao\9t- i  =  do)

Poi =  P(9t =  di|0j_i =  do) =  1 — poo

There are various possible models which incorporate this Markov switching state. 

For example, in his 1989 paper, Hamilton presented a mean-switching model with 

autocorrelated error terms. He also presented a model which assumes th a t not only 

the mean but also the variance of error term s is subject to a  Markov switching states. 

One also can formulate models with some exogenous variables whose coefficients are 

function of the states.
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However, for ease of exposition, we formulate the most simple model as follows.

Vt =  Ot +  Vt ( 1)

where T]t ~  N ( 0, cr^). In this model, only the mean value of yt is subject to an 

occasional discrete shifts between the two regimes. Due to these shifts, the model 

exhibits non-linear behavior. Further, we assume that the economic agents observe 

the value of yt at each t. However, they do not directly observe which state  the 

economy is in. Then, our problem is to make a statistical inference about the state 

of the economy at each point in time, given all the information in the past. We 

assume th a t the information up to and including time t can be summarized by a 

vector Yt =  (y t, yt- 1 , • • •, J/o)-

Hamilton (1989) proposed a non-linear filter which deals with such non-linear 

models with regime shifts. Our purpose is to present an optim al linear filter for this 

type of model. To do so, it is useful to represent the model in a state  space form. 

Introduce an indicator vector X t = [ in  £otf such that:

1 if state  i occurs 

0 otherwise 

for i =  1,0. Then, 8t can be w ritten as

0t =  O-lXit +  doXot =  J % ,

where f  =  [ai a0]. Therefore, equation (1) becomes:

yt =  J 'X t  + T)t- ("-)

We are now in the position to derive the transition equation for the vector .V(. Con­

sider the expected value of Xj^+i conditional on Yt:

=  E ( x j,t+i\Xt) = PijXn + pojXot,

5
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or simply,

E ( X t+i\Yt ) = A'Xt,

where A is the transition m atrix of the Markov process, 9t:

Pu  I - P 11
A =

1 — Poo Poo

The left hand side of the above equation is the expected value of the next period's 

indicator vector conditional on all the information available at tim e t. From the 

construction of the indicator vector, we can see E{x j tt+i\Yt) equals a probability of 

being in each state  conditional on information up to tim e t with j  being the state 

prevailing a t time t +  I. Hence, E(x j tt+l\Yt) takes on a value between 0 and 1. while 

a realization of x J i t + 1 is either 1 or 0. Therefore, to formulate an equation governing 

the transition from Xt  to X*+j, we introduce a disturbance terms, Sj,t+i to fill the gap 

between the actual value taken by and its conditional expectation for =  0.1. 

Then we have:

i
Xj,t+l ^   ̂PijXit "F £j,t+1,

i=0

or simply,

^ t + i  =  A X t  +  £t+i (3)

where e t =  [eit £ot]'-

The behavior of the disturbance vector £t+j is worth investigating. From the 

binary property of xJit+1, and from the construction of the transition equation (3). 

£j,t+l is necessarily binary and can be written as:

£j,t+1 =  x i,t+1 — E(x j,t+i\Xt)
i

=  x j,t+l ~  Pijx *t’ (3)
i=0

6
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Equation (4) implies th a t E (s j<t+\\Xt) — 0. Moreover, conditional on the value of X t.

{1 -  E L o  P*ix it with probability E,=o Pijx it

-  Ei=o Pax it with probability 1 -  E i=oPvxu-

Note th a t, conditional on X t, the probability tha t x j tt+i — 1 is E f = o  Pijx it-> an<i the 

probability th a t xJtt+i =  0 is 1 — E i = o  Pijx it- The conditional variance of is:

E(elt+i\Xt)  =  ^1

i i

=  J 2  Pa1 * -  £  phx 't 
1 = 0  1 = 0

1
= E (Xjtt+1 |* t) -  Y i  Pijx it (5)

1 = 0

for j  =  1,0. The derivation of the conditional variance of the error term  relies on the 

fact tha t Xjt =  1 or 0 so th a t x j t =  xjt and X{tXjt =  0 for i ^  j .

Equations (2), (3), and (5) can be further simplified by using the relationship. 

x ot =  1 — x it, to yield:

Vt =  (ai ~  a0)xt + aQ +  r]t, and (6)

x t+i =  (pn — Poi)xt +  Poi +  £t+i (~)

crj+ 1 =  — ( P l l  — Poi )* t  — Pol l  (b)

where we replaced x t for i n  and e t for £u  for notational convenience. Equa­

tions (6) and (7) are the s ta te  space representation of our model, and (8) describes 

the evolution of the variance of the binary process, {£t}-

2.2 O ptim al Linear Filter

Let Yt =  (ytiHt-ii ...,Po)- We seek the optim al linear filter of the model th a t yields a 

series of linear estim ators for the value of £t+i, given Yt. T he optimal linear estim ator.

7
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E"{xtJt.i\Yt) =  A~Yt +  6*, is defined here to minimize the expected mean square error 

(MSE):

£ [|| x t -  (A Y t- i  +  b) ||2]. (9)

For our purpose, the following theorems are necessary.

THEOREM  1:

Let the random  variable X  and Y  be jointly d istributed random variables such as:

X
/V

/
m x V‘-‘XT V

‘ - ‘ x y

\

Y V I 3 i

v~>yy /

Then,

E ‘ { X \Y )  = m x + X ^ ( Y  -  m y ). (10)

THEOREM  2:

Suppose th a t X ,  Fj, Y2, ■ ■ ■, Yk are jointly distributed, with Yi . Y 2, ■ ■ ■ .Yk  mutually 

orthogonal to one another. Then,

ET{X\YU K2, • • •, Yk) =  E '{ X \ Y x) +  E ' ( X  |K2) +  • • • +  E ' ( X \ Y k ) — ( k — l )m r ( 11)

For the proofs of Theorem 1 and 2, please see Anderson and Moore (1979).

Define the following notations:

E  (*,+i | r t ) =

E ' ( x t\Yt) =  x t|t, and 

E'{yt+i\Yt ) =  -

8
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For all t, the vector Yt can be divided into two orthogonal parts: Y\-\  and vt. vt is the 

innovation containing the new information which becomes available when the new 

observation, yt, arrives. A part of the information carried by yt is already contained 

in Yt- 1 through E"(y t \Yt- i ) .  Thus, we can express the innovation at tim e t by vt =

yt — E ‘ (yt\Yt). By the  orthogonality condition of the optimal linear estim ator. V't-i

and vt are m utually uncorrelated. Therefore, using Theorem 2, we have:

E ' { x t\Yt) =  E*{xt \Yt^ )  +  ET{xt\vt ) -  E ( x t). ( 12 )

From Theorem 1, the  second term  in (12) becomes:

=  E ( x t) + C ov(x t, v t)Var(v t)~lvt 

=  E ( x t ) +  (ci! -  a0)S £|t_ 1((a1 -  a0)2S«|t-i +  crv)~l

x (yt ~  (fli -  «o )it|i-i -  ao), (1 -i)

since

Cov{xu vt) =  Cov(x t,(ai  -  a0)(x t -  x t\t_x )+  T ) t )

=  (ai — ao)S£|t-i

and

Var(vt)  =  V^ar((at -  a0)(x£ -  +  77t )

=  (a i -  ao)2Si|t_! +  o-2.

Substituting (13) into (12) and noting we obtain:

i t \ t  =  +  ( a i  — a o ) £ j | * - i

9
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x ((a t -  a0)2S t|t_1 +  <r2) l {yt -  (a i -  a0)x£|£_i -  a0) (14)

Therefore, the best linear estim ator of x t+i, given Yt is:

^i+l|i =  (Pn ~  P o i^ q t- i +  Poi

=  (pn — Poi)*t|t-i +  Poi +  (pn — Poi)(ai — ao)Sf|£_i

x ((a t -  a0)2S £|£_i +  crj)_1(yt -  (a i -  ao jitit-! -  <*o)

=  (Pii — P o i 1 + P 01 +  k ( y t -  (a i -  a0)x£|£- i  -  a0), (15)

where

^  =  (Pn — Poi)(ai — a o )^ £|£_i((ai — a0)2S £|£_i +  cr2) l . (16)

The evolution of the one period ahead prediction error, S £|£_j is given as:

S £+i|£ =  — ^t+i|t)2|^ ”«]

=  (Pll ~  POI )2^t|t—1 +

— ( P n  ~  P o i ) 2( a i  — a o ) V 2 +  ( a i  — a 0 )2E £|£_ i )  l S £|£_ i  

=  ( p i l  — P o i )2S £|£_i  +  0"2 £+i — &i(pil  — P o i ) ( a l ~  a o ) S £|£- l -  ( I f )

Equation (8) shows that a ^ t+i depends on E ( x t+i\xt) and x t. Thus. <r,£+I is time-

varying and has to be updated at each iteration. The best linear estim ator of cr, £+,

can be obtained by replacing E (x £+i |x £) and x t- i  by x £+i|£ and x £|£ in (5). Therefore.

°£ ,£+1 =  — (Pn — Poi)^t|t — Poi- ( ^ )

Given initial values, x0, Sqo and cr*0. equation (14), (15), (17), and (18) r e c u r ­

sively yield a series of the linear optimal estim ates given the observation of y available

in the previous tim e period, x £|£_i, and prior variance, S £|£_i. The filter can be in-

10
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terpreted  as follows. At tlie beginning of tim e t, economic agents know x ^ - i  and 

E qt-i- W hen observation yt becomes available, they update their estim ation to yield 

i t|j, incorporating the prediction error vt. Given this best estim ate of x t available at 

tim e t, the one period ahead estim ation, x t+ i|t? is formed using the tra jecto ry  of { x j  

given by (7). The variance of the transition error, cr5it+1, is estim ated, preceding the 

updating of the variance of one-period ahead estim ation error, S t+i|t .

The recursive equations (15) and (17) can be obtained also by applying a standard 

Kalman filter formulae on the s ta te  space equations (6) and (7). assum ing that x t. 

c£, are Gaussian with the variance of et sam e as the non-Gaussian case for all t.

2.3 P roperties of th e O ptim al Linear F ilter

The properties of the optimal linear filter applied to a non-Gaussian system  can be 

most efficiently presented in comparison to th a t applied to a Gaussian system. An­

derson and Moore (1979) indicated tha t if a  Kalman filter is applied to a  Gaussian 

process, it yields a series of optim al unbiased estim ators in the sense of minimizing 

MSE among all forms of estim ators (not necessarily linear). Moreover, x q ^  and 

are the conditional mean and variance of x t given Yt- 1 , respectively. There­

fore, when two series {xt} and {t/*} are jo in tly  normally distributed, the  Kalman 

filter updates the conditional distribution of the  hidden sta te  since a conditional nor­

mal distribution, as well as normal distribution, can be completely characterized by 

its mean and covariance matrix. Note th a t if x t and Yt are jointly uorm ally dis­

tributed , E { x t\Yt) =  E ( x t) +  E ^ E ^ V j  — E{Yt )). Therefore, replacing E ’ (x t+l\Yt ) 

by E(xt+i\Yt) in the derivation of the Kalm an filter in section (2.2) and carrying out 

the whole derivation will yield the Kalman filter which shares the same form. The 

above exposition also proves th a t we can obtain  the optim al linear filter obtained in

11
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subsection 2.2 by simply applying the standard Kalman filter formulae on the Gaus­

sian analog of a non-Gaussian system 1. However, if a system  fails to be Gaussian, as 

in our model, the  resulting estim ator series is no longer optim al among all forms of 

estimators. This is because the nonlinear system, (6), (7), and  (8), cannot be fully 

described by the ir first and second moments, whereas the Kalm an filter utilizes only 

the first and second moments of the  series.

It is technically possible to obtain a filter for a non-Gaussian system  that yields 

a series of optim al MSE estim ators among all forms of estim ators. At each itera­

tion, given P(art |V'£_i) available in the previous time period, calculate the  conditional 

density P (x t\Yt\) by incorporating the new observation yt . Then, calculate i (|, as 

follows:

/+ o o

x tP ( x t\Yt )dxt
-oc

The one-period ahead estim ator |4 can be obtained by using equation (7). The 

conditional mean a t each tim e period can be obtained in the sim ilar manner. This is 

the approach taken by Hamilton (1989). His basic filter updates the conditional joint 

density, P {x t, x t- i ,  • • •, Xt-r+ilVj), for each i, where r is the order of AR error process 

of the measurement equation specified in his model. Param eters are estimated by 

maximizing the likelihood function constructed as a byproduct of the filter.

Although the Kalman filter applied on the non-Gaussian system  is not universally 

optim al, it has closed form solution and is easy to implement. Moreover, it is said 

th a t the Kalman filter is more robust with respect to errors in variables. In the 

following two sections, we compare the performances of the linear optim al filter and 

the nonlinear filter.

Hn other words, we are considering the processes, { i t } ,  {yt}, and { f t } ,  whose first and second 
moments are the sam e as those of the corresponding original series, { i t } .  { j/t}, and { e } .  Then, the 
analog series { i t}, {yt }, and { f t } is also described by the system, (6), (7), and (8).

12
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3 D eterm ination  of Peaks and Troughs

In this section, we investigate the performance of the Kalman filter, using the quar­

terly US real GNP. In order to compare the results w ith those of Hamilton’s, we use 

the observations from 1951:11 to 1984:IV2. Our objective is to assign a probability of 

the economy belonging to a  specific state  at each tim e t and to determine peaks and 

troughs of the GNP series. These results are compared with those of Hamilton and 

NBER.

We applied the Kalman filter derived in section 2.2 twice: once with the param eter 

values used by Hamilton (K F (l))3 and then with crude a priori param eter estim ates 

(KF(2)). The use of the crude parameter estim ates makes the procedures simpler 

and easier. Table 2 presents the param eter values used for each filter.

The Kalman filter generates series of both prior and posterior estim ates of prob­

abilities, P ( x t\Yt- i )  and P ^ IK t) ,  respectively. Note tha t x t\t equals to P (x t =  l|>j) 

by construction. Hamilton’s basic filter generates a series of the optimal estim ates 

of P ( x t\Yt). To be consistent with Hamilton’s basic filter, we use the estim ates of 

P ( x t =  l|Vt) to establish the historical business cycle dates. Following Hamilton, for 

each t we determ ine the state  to be in recovery if P ( x t =  l|Kt ) >  0.5 and in recession 

otherwise. The results and the param eter values used are found in Table I and Table 

2, respectively. Also, figure 2 reports P (x t =  0|K£) estim ated by the nonlinear filter. 

KF(1), and KF(2).

2The same data set was used by Hamilton (1989).
3The estim ate of is not available from Hamilton’s results since his model assumes rjt to follow 

AR(4) process with white noise error term, say vt . The value for <rn is estim ated by simulation from 
the standard deviation of vt .

13
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Detecting business cycle turning points by Kalman filter has four differences com­

pared to Ham ilton’s nonlinear filter. First, Kalman filter is a linear approximation of 

the optim al nonlinear filter. Second, Kalman filter utilizes only the information up 

to tim e f, whereas Hamilton uses a full-time sm oother which generates the series of 

expected probabilities of each state  given all the information up to tim e T,  P(xt|V'7-). 

Moreover, the model we assume is simpler than H am ilton’s. Our model is described 

by equations (6) and (7), whereas Hamilton, in addition, assumes tha t the distur­

bance term  r/t follows AR(4) process4. Finally, a priori param eter estim ates obtained 

by crude methods are used for the KF(2).

Despite these simplifications, the dates determined by the Kalman filter both with 

Ham ilton’s and crude param eter estimates adhere to those of NBER surprisingly well. 

Table 1 shows tha t the dating of peaks and troughs determ ined by the Kalman filters 

correspond to those of NBER’s except the trough in 1961 and 1975, and the peaks 

experienced in 1960 and 1969. Given these results, our parsimonious model and the 

crude but easy a priori estim ation of parameters tu rn  out to be advantages to the use 

of the Kalman filter, enhancing time-efficiency.

4It is possible to incorporate AR(4) disturbances and to obtain sm oothed estimates in the Kalman 
filter (See Anderson and Moore (1979)). However, to pursue simplicity, we choose to use the parsimo­
nious model. If US GNP series is truly generated by the system  described by Hamilton’s model, our 
model would be a misspecification. The effect of this type o f  misspecifiction is tested by simulation 
in the next section.

14
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4 Sim ulations

In this section, we com pare the Kalman filter and H am ilton’s basic nonlinear filters in 

more general contexts. Econometricians face unexpected disturbances or structural 

changes in a series when they attem pt to determ ine the  hidden sta te  of the series 

using the param eter values estim ated from the past da ta . In such a situation, per­

formances of the  Kalman filter and nonlinear filter not only with accurate a priori 

param eter estim ates but also with inaccurate estim ates m ust be taken into account. 

In this section, performances of the two filters are examined in various situations 

described as follows, (a) Accurate a priori estim ates are available, and there is no 

model misspecification. (b) Misspecification: the simplest mean-switching model is 

specified when the true  series has serially correlated disturbance term , (c) The series 

is subject to occasional jum ps, (d) The series experiences a sudden and permanent 

shift in the mean.

In order to com pare performances of the Kalman filter and nonlinear filter. 1000 

series of size T=134 is generated with index series x t which is predetermined according 

to NBER business cycle dates. The parameters (pn,Poo, Pi) which is necessary to run 

the Kalman and nonlinear filters are obtained by a crude method from the index 

series. The two filters are applied on each series to obtain the  following statistics.

M S £  =  £ [ | |  n2]

and A, the number of times tha t P (x t =  l|T j) fails to predict the true state of the 

economy if the user determ ine the true state  to be 1 if P [ x t =  l|V't ) > 0.5. and 

0 otherwise. MSE is calculated after is clipped at 1 and 0. These statistics are

15
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collected for 1000 simulations and their means and standard deviations are calculated. 

This process was done for each of situations, (a),(b),(c), and (d).

4.1 Correct E stim ates and C orrect M odel Specification

In the first set of simulations, we assum e th a t the series is tru ly  generated based 

on the Markov mean-switching model in equation (6) and (7). We also assume that 

researchers correctly specify the model and  have accurate param eter estim ates. To 

generate the series following equation (6), we used the Hamilton’s estim ation for 

the value of parameters ( a i ,a o ,P i i ,P o o ) ,  the crude a priori estim ate for p \ .  and crn 

estim ated by simulation (See Footnote 3). The same param eter values are used to 

run each filter. Therefore, the simulations are done assuming th a t researchers have 

accurate estim ates of the param eters a priori. The results indicate that the mean of 

MSE of Kalman filter is more than  th a t of nonlinear filter. However, the mean of the 

number of false inference differ only by 1.733 (N  =  14.7240 for the Kalman filter and 

N  =  12.9910 for the nonlinear filter). The results is listed in Table 3:(a).

4.2 M isspecification

Next, we examine the two filters’ perform ances in the case of misspecification. Sup­

pose th a t the true series is generated by the  model specified by Hamilton (1989):

y t =  (ai -  a0)xt + ao + et

Cf =  +  <f>2*t-2 +  +  < ^ £ -4  +

where x t is a Markov switching process. Assume th a t researchers erroneously specifies 

the model ignoring AR(4) disturbance process as:

yt =  (ai -  «o)^t +  do +  Vt-

16
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This is the model we used to determ ine the business cycle dates in section 3. Our 

purpose in this subsection is to determ ine the effect of this type of misspecification. 

The results of this simulation has an im portant implication for the investigation in 

section 3, since the drastic simplification made in applying the Kalman filter involves 

some risk of erroneously specifying a model.

In generating the series, we used param eter values (a i, a0, <p\, $2 , 0 3 , 0 4 , &v) ob­

tained by Hamilton’s maximum likelihood estimation. Three filters are run on each 

of 1000 sample paths created w ith this param eter set: H am ilton’s basic filter with 

the correctly specified model, H am ilton’s basic filter with the erroneously specified 

model, and the Kalman filter w ith an erroneously specified model. In running these 

filters, we assume that an accurate estim ate of the variance of T]t is available.

The results are shown in Table 3:(b). The comparison between the nonlinear 

filter reveals that the misspecification has little effect on the performances of the 

nonlinear filter with the misspecified model. The mean of MSE and N of the Kalman 

filter are greater than those of the  nonlinear filter by 0.0140 and 1.9130, respectively. 

These results justify the use of the Kalman filter despite its parsimonious model and 

suboptimality.

4.3 Occasional Jum ps

Next, the effects of occasional jum ps on performances of the two filters are investi­

gated. The jum p series u>t is generated as follows.

zt if | z t |>  6 ■ a :
u t =  (19)

0 otherwise.

where z t ~  A ^O ,^). Therefore, the whole disturbance is a  sum  of rjt and u;f. We 

assume th a t econometricians have an accurate estimate of <r*. but cannot expect the

17
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jum ps. Thus, they have an inaccurate estim ate for the variance of the disturbance 

term . We run both the nonlinear filter and the Kalman filter for various values of a z 

and S. We present the results in Figure l:(c).

As the m agnitude and frequency of the jum ps becomes larger, the means of MSE 

and N increase for the both filters. MSE and N of the  Kalman filter exceed those 

of the nonlinear filter for a series with jum ps of low m agnitude and low frequency. 

However, the  maximum difference is 0.0125 and 1.7230, respectively. Moreover, the 

difference in performances between the two filters become smaller as jum ps become 

more frequent and larger. Further, the Kalman filter outperforms the nonlinear one 

for larger and more frequent jumps.

4.4 Sudden Shifts in th e M ean

We also investigated effects of an unexpected perm anent shift in the mean of the 

series. Researchers are assumed to possess and use an a priori estim ate of a t and 

a0 which is accurate before this structural change. Being unable to anticipate the 

structural change, they mistakenly use inaccurate estim ates. Figure l:(d) shows the 

results. Both the mean of MSE and N of the Kalman filter are larger than those of 

the nonlinear filter for modest shifts. However, MSE and N of the Kalman filter never 

exceed those of the nonlinear filter by more than  0.0127 and 2.5330, respectively. The 

larger the m agnitude of shifts, the larger the means of MSE and N become both for the 

Kalman filter and the nonlinear filter. However, the degree at which the nonlinear 

filter outperform s the Kalman filter becomes smaller as the shift becomes larger. 

Especially, in the case of downward shifts, the Kalman filter eventually outperforms 

the nonlinear filter. This asymmetry is due to  the fact th a t the preassigned index 

series (according to NBER business cycle dating) contains larger number of l's than

18
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O’s. O ut of 134 period, 109 periods are assigned the value of 1 and 25 periods are 

assigned 0. Simulations for different preassigned index series are done in appendix.

T he common characteristics for all types of simulations is tha t the standard de­

viations of MSE and N are smaller for the  Kalman filter.

19
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5 Conclusions

We have investigated the possibility of the use of the K alm an filter for models with 

Markov regime shifts. Our objective is to present the Kalman filter as an alternative 

algorithm to determ ine the hidden state of a series. The Kalman filter formulae are 

derived for this type of model, its theoretical properties are examined in comparison 

to those of the nonlinear filter. The Kalman filter applied to this type of model is only 

optimal within the  class of linear estimators. However, it has a closed form solution 

and easy to implement. Therefore, if the Kalman filter approximates Hamilton's 

optim al filter reasonably well, its use can be justified.

To examine its performance, the Kalman filter is applied to US real GNP series, 

and the results are compared with those of Hamilton and NBER. Despite its the­

oretical suboptim ality, we found the Kalman filter with a reasonably good a priori 

param eter establishes the business cycle dates as well as N BER’s and Hamilton's 

dating scheme.

Next, we conducted simulations to examine the performances of the Kalman filter 

in more general contexts. The results of simulations confirm the ability of the Kalman 

filter to indicate the  hidden sta te  of a  series. When the  model is correctly specified 

with the accurate a  priori estim ates, the mean of N of the Kalman filter is greater 

than tha t of the nonlinear filter only by 1.733 (out of 134). Performances of both 

the Kalman and the nonlinear filters are negatively affected by misspesification of the 

model, unexpected occasional jum ps, and perm anent shifts in the mean of the series.

However, the mean of MSE or N of the Kalman filter differs from those of the 

nonlinear filter by less than 2. Moreover, the larger the m agnitudes of misspecification.
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jum ps, or shifts, the better approximation the  Kalman filter becomes to the nonlinear 

filter, and eventually outperforms the la tter. In sum, the Kalman filter is found to be 

more robust to shocks (or structural changes) in the economy which are not expected 

by researchers.

In conclusion, its simplicity and easy application, coupled with its reasonable 

performance, justifies the use of the Kalman filter in making probabilistic inference 

about the hidden sta te  of a series.

21
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A A ppendix

In section 4.4, we observe tha t the performances of both the Kalman and nonlinear 

filters are asymmetric between downward and upward shifts. In the appendix, wc 

investigate the effect of different index series on the performance of both filters in 

determining the turning points. We prepare four different index series. For each 

index series and different degrees of shifts, 1000 series of size T  =  100 are generated. 

We apply both the Kalman and nonlinear filters on each series and calculate MSE 

and N. We assume that the unexpected shift occurs at t — 51. We present the results 

in Figure 3.

When the index series contains larger number of the states of higher mean than 

tha t of lower mean, both the Kalman filter and nonlinear filter adjust better to the 

unexpected upward shifts than to downward shifts with the sam e magnitude, and 

vice versa. Moreover, the Kalman filter adjust better than the nonlinear filter to the 

shift of the opposite to the dominant states as the m agnitude of the shifts become 

larger.
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Table 1 

Determination of Peaks and Troughs

Peaks

NBER Hamilton KF(1) KF(2)

19.53:111 1953:111 1953:111 1953:111

1957:111 1957:1 1957:111 1957:111

1960:11 1960:11 1960:111 1960:111

1969:IV 1969:111 1969:111 1969:111

1973:IV 1974:1 1973: IV 1974:1

1980:1 1979:11 1980:1 1980:1

1981:111 1981:11 1981:111 1981:111

Troughs

NBER Hamilton KF(1) KF(2)

1954:11 1954:11 1954:11 1954:11

1958:11 1958:1 1958:11 1958:11

1961:1 1960: IV 1960: IV 1960:IV

1970:IV 1970:IV 1970:1V 1970: IV

1975:1 1975:1 1975:11 197-5:11

1980:111 1980:111 1980:111 1980:111

1982: IV 1982: IV 1982: IV 1982: IV

H am ilton’s Full-Sample Smoother (Reported in H am ilton’s 1989 paper) 

Kalman F ilte r(l) uses Hamilton’s param eter values 

Kalman Filter(2) uses crude param eter estim ates
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Table 2 

Parameter Values

Parameter H am ilton’s Crude Estimates

a i 1.1643 1.1007

do -0.3577 -0.3408

Pu 0.9049 0.9394

Poo 0.7550 0.8235

Pi - 0.7463

*0.8195 0.8467

<i>\ 0.0140 -

(f>2 -0.0580 -

<f> 3 -0.2470 -

4>4 -0.2130 -

(Tu 0.7690 -

* The value is obtained by simulation.
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Table 3 (a) 

Accurate a Priori Estim ates 

No Model Misspecification

True System /M odel: yt =  (aj — aQ)x t +  ao +  £t

MSE 

mean std

N

mean std

Kalman F ilter 

Nonlinear F ilter

0.0844

0.0714

0.0117

0.0157

14.7240

12.9910

3.2460

3.4060
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Table 3 (b)

Model Misspecification

True System: yt =  (ai — a0)x t +  a0 +  £t 

where St = +  4>2^i- 2  +  <^3£t-3 +  ^ 4^1-4

Model: yt =  (at -  a0)£t +  <*0 +  it

MSE 

mean std

N

mean std

Kalman Filter 

Nonlinear Filter 

Nonlinear Filter (AR(4))

0.0831

0.0722

0.0703

0.0118

0.0172

0.0166

14.4640

13.0640

12.7110

3.0988

3.5814

3.4493

<f>i — 0.014, (j)̂  — —0.058, 0; II 1 0 to =  -0 .213 , crv =  0.7690
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Figure 1
(c) Occasional Jumps

True System:

Ut =  (<*i — +  flo +  £« +  Wt
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Z t if \zt\ > 6 - a2 

0 otherwise, where z t ~  /V(0, a 2)
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Figure 1 (Continued)
(c) Occasional Jumps

True System:

yt =  (ax — do)xt +  ao +  6t +  u>t

=
zt if \zt\ > 6 -a 2 

0 otherwise, where zt ~  iV(0, a2)

Model:

yt — (<*i — )xt +  ao +  ct

Kalman Filter 

Nonlinear Filter

MSE
6 =  2.0

N

0.105

0 095

0 005

0 08
0 075

16 *

0 9 0 80.40 2

G;

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Figure 1 
(d) Sudden Shift in the Mean

True System:

yt — — ao)** +  ao +  fit +  £«

fit =
p if t > =  r  

0 otherwise

Model:
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Figure 2
Estimation of P(xt = 0|yt)
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Figure 2 (Continued)
Estimation of P(xt =  0|Fi)
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Figure 3
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Figure 3 (Continued)
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